10001

Predictive Value of Serum Cystatin C, β_2 -Microglobulin, and Urinary L-FABP on the Development of Contrast-Induced Nephropathy

¹Yokohama Sakae Kyosai Hospital

Tsuyoshi Nozue¹, Ichiro Michishita¹, Kei Yamamoto¹, Ryo Kamijima¹, Yuya Kimura¹, Hiromasa Katoh¹, Taku Iwaki¹, Ichiro Mizuguchi¹, Motohiro Miura¹

Background: Contrast—induced nephropathy (CIN) has been recognized as a serious complication of diagnostic coronary angiography and percutaneous coronary intervention (PCI), and has been associated with prolonged hospitalization and adverse clinical outcomes. Useful predictors of CIN are necessary to minimize the risk of developing CIN. Methods: We prospectively measured serum cystatin C (CysC) and β_2 -microglobulin (β_2 -MG), and urinary liver—type fatty acid—binding protein (L-FABP), β_2 -MG and N-acetyl— β -D-glucosaminidase (NAG) before and 1 day after percutaneous coronary intervention (PCI) in 96 patients undergoing elective PCI. Results: The frequency of CIN was 5% (5/96). Baseline serum β_2 -MG (4.2±2.6 vs. 2.2±1.0 mg/L, p=0.0007) and CysC (1.51±0.52 vs. 1.11±0.34 mg/L, p=0.013) levels were significantly higher in the CIN group. Urinary β_2 -MG, NAG, and L-FABP levels became significantly elevated after PCI. Of these, the mean change of urinary L-FABP was significantly bigger in the CIN group (25.2±31.5 vs. 8.9±16.3 ng/mL, p=0.044). Univariate linear regression analysis showed that the mean change of urinary L-FABP correlated positively with the volume of contrast medium (r=0.460, p<0.0001). Receiver—operating characteristic analysis showed that baseline serum β_2 -MG exhibited 75% sensitivity and 80% specificity at a cut—off point of >2.8 mg/L for detecting CIN, and baseline serum CysC exhibited 75% sensitivity and 73% at a cut—off point of >1.26 mg/L. Conclusions: Baseline serum β_2 -MG and CysC were useful predictors of CIN. The change in urinary L-FABP serves as an indicator of renal injury due to contrast medium and as an adjunct predictor of CIN.