10079

The study of coronary dilatation mechanism by Angiosculpt balloon.

¹Kanazawa Cardiovascular Hospital

Naoto Tama¹, Yuki Horita¹, Masanobu Namura¹, Masatoshi Ikeda¹, Taketsugu Tsuchiya¹

Bachground: The coronary stenotic lesions have been dilated by cutting balloon with 63% plaque compression. The angiosculpt consist of a minimally compliant balloon encircled by a low profile attached spiral nitinol cage. This angiosculpt may be expected the coronary dilatation mechanism as same as cutting balloon. Objectives: We clarified the dilatation mechanism of angiosculpt balloon angioplasty for de novo coronary stenotic lesions by the angiography and IVUS. Methods & Results: The 63 coronary de novo lesions were enrolled and dilated with nominal pressure. & 30 sec. by angiosculpt, the QCA of angiography and IVUS—findings were analyzed at pre/post intervention, beside these lesions were classified into 2 groups by the extent of dense calcium on Virtual histology, Calcified group; N=25, White>10%, Non-Calcified group; N=38, White<10%. The QCA results at pre/post dilatation in all lesions were $2.7\pm0.6/2.6\pm0.6$ (NS) in RD(mm), $62.5\pm10.9/30.2\pm14.6$ (p<0.0001) in MDS. The IVUS findings presented at pre/post intervention, Vessel area (mm²): $11.8\pm4.9/11.8\pm4.7$ (NS), Lumen area (mm²): $3.2\pm0.8/4.5\pm1.3$ (p<0.0001), Plaque area (mm²): $8.5\pm4.7/7.3\pm4.1$ (p<0.0001). The stenotic lumen was mainly dilated by the compression of the plaque. Concerning with the influence of calcified group was $8.6\pm5.4/7.5\pm4.8$ (p<0.0001). There were no significant differences in plaque area of Non-Calcified group was $8.6\pm5.4/7.5\pm4.8$ (p<0.0001). There were no significant differences in plaque reduction rate between two groups. Conclusions: The dilatation mechanism of angiosculpt balloon with nominal pressure was suggested by the plaque compression without vessel expansion or plaque shift.